Abstract

An analytical theory for the interaction of an electron bunch with a nonlinear plasma wave is developed to make it possible to design efficient laser- and/or beam-driven accelerators that generate high quality monoenergetic electron beams. This theory shows how to choose the charge, the shape, and the placing of the bunch so that the conversion efficiency from the fields of the bubble to the accelerating electrons reaches nearly 100% and the beam quality is optimized. For intense drivers the nonlinear wake is described by the shape of the bubble and beam loading arises when the radial space-charge force of the beam acts back on the electron sheath surrounding the ion channel. The modification of the wake due to the presence of flat-top electron bunches is studied and it is shown that the energy spread of an externally injected flat-top electron bunch can be kept low. The bunch profile that leads to zero energy spread is also derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.