Abstract

The beam spreading and evolution behavior of a partially coherent, Hermite-cosine-Gaussian (HcosG) rectangular multi-Gaussian correlated Schell-model beam propagating in oceanic turbulence is studied. Analytical expressions for the cross-spectral density function, as well as the root mean square (rms) beam width and the spectral degree of coherence, are derived based on the extended Huygens-Fresnel principle. The HcosG rectangular multi-Gaussian correlated Schell-model beam exhibits a multi-lobe pattern at short propagation distances. The dependencies of the number, size, shape, and centroid of the lobes on displacement parameters, source size, order of field distribution, and displacement are investigated. As the propagation distance increases, the spectral coherence decreases, and the differences between the spectral coherence curves gradually diminish. Additionally, for HcosG rectangular multi-Gaussian correlated Schell-model beams, better propagation performance was found in oceanic turbulence with larger mean square temperature dissipation rate, smaller turbulent kinetic energy dissipation rate per unit mass of fluid, and larger relative strength of temperature and salinity fluctuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call