Abstract
We theoretically investigate the influence of a longitudinal laser polarization component from beam focusing on spin dynamics in Kapitza-Dirac scattering by solving the relativistic Dirac equation with time-dependent perturbation theory. The transverse spacial dependence of the longitudinal beam polarization component is accounted for, by approximating a Gaussian beam with plane-wave components. We find that corrections from a longitudinal laser beam polarization component approximately scale with the second power of the diffraction angle $\epsilon$, from which we conclude that a related influence from beam focusing can be made negligibly small for sufficiently low beam foci.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.