Abstract
The University of Maryland Electron Ring (UMER), designed for transport studies of space-charge dominated beams in a strong focusing lattice, is nearing completion. UMER models, for example, the recirculator accelerator envisioned as a possible driver for heavy-ion inertial fusion. The UMER lattice will consist of 36 alternating-focusing (FODO) periods over an 11.5 m circumference. The main diagnostics are phosphor screens and capacitive beam position monitors placed at the center of each 20° bending section. In addition, pepper-pot and slit-wire emittance meters are in operation. We present experimental results for three cases of strong space-charge dominated transport (7.2, 24, and 85 mA, at 10 keV) and contrast them with one case in the emittance-dominated regime (0.6 mA at 10 keV). With focusing given by σ0=76°, the zero-current betatron phase advance per period, the range of currents corresponds to a space-charge tune depression of 0.2 to 0.8. This range is unprecedented for a circular machine. The beam physics over three transport distances is considered: at or near the source, over the length of the matching section (about 1 m), and single turn (10 m). Issues associated with beam characterization, scaling of various parameters, alignment, and envelope matching are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.