Abstract

We designed a 100 MeV/100 kW electron linear accelerator for NSC KIPT, which will be used to drive a neutron source on the basis of subcritical assembly. Beam dynamics studies have been conducted to reach the design requirements (E = 100 MeV, P = 100 kW, dE/E < 1% for 99% particles). In this paper, we will present the progress of the design and the dynamic simulation results. For high intensity and long beam pulse linear accelerators, the BBU effect is one big issue; special care has been taken in the accelerating structure design. To satisfy the energy spread requirement at the linac exit, the particles with large energy difference from the synchronous particle should be eliminated at a low energy stage to ease the design of the collimation system and radiation shielding. A dispersion free chicane with 4 bending magnets is introduced downstream of the 1st accelerating section; the unwanted particles will be collimated there.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call