Abstract

As part of the Snowmass'21 community planning excercise, the Advanced Accelerator Concepts (AAC) community proposed future linear colliders with center-of-mass energies up to 15 TeV and luminosities up to 50 × 1034 cm-2 s-1 in a compact footprint. In addition to being compact, these machines must also be energy efficient. We identify two challenges that must be addressed in the design of these machines. First, the Beam Delivery System (BDS) must not add significant length to the accelerator complex. Second, beam parameters must be chosen to mitigate beamstrahlung effects and maximize the luminosity-per-power of the machine. In this paper, we review advances in plasma lens technology that will help to reduce the length of the BDS system and we detail new Particle-in-Cell simulation studies that will provide insight into beamstrahlung mitigation techniques. We apply our analysis to both e + e - and γγ colliders. The challenges and solutions described in this paper are considered independently. A unified, self-consistent concept for a BDS system for a 15 TeV linear collider will be the subject of future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.