Abstract
It is shown that the oceanic beam attenuation coefficient can be retrieved from airborne laser-induced and depth-resolved chromophoric dissolved organic matter (CDOM) fluorescence. The radiative transfer equation (RTE) retrieval methodology does not require a laser beam spread function model since two CDOM fluorescence bands are used in conjunction with a beam attenuation spectral model, is self-normalizing since the CDOM absorption coefficient and laser beam irradiance are common to both fluorescence observational channels, and is enabled by the known isotropic phase function for CDOM fluorescence. Although this RTE analytical inversion theory is exact, the retrieval uncertainty is reduced by configuring the proposed lidar in the multiple-field-of-view beam attenuation mode to significantly diminish observation of multiple scattering. The theory can be applied over wide regions of the ocean's continental margins, estuaries, lakes, and rivers that are known to have sufficient CDOM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.