Abstract

A "double-hydrophobic" elastin-like triblock polypeptide GPG has been constructed by mimicking the localization of proline- and glycine-rich hydrophobic domains of native elastin, a protein that provides elasticity and resilience to connective tissues. In this study, the effects of trifluoroethanol (TFE), an organic solvent that strongly affects secondary structures of polypeptides on self-assembly of GPG in aqueous solutions were systematically studied. Beaded nanofiber formation of GPG, where nanoparticles are initially formed by coacervation of the polypeptides followed by their connection into one-dimensional nanostructures, is accelerated by the addition of TFE at the concentrations up to 30% (v/v), whereas aggregates of nanoparticles are formed at 60% TFE. The concentration-dependent assembly pattern discussed is based on the influence of TFE on the secondary structures of GPG. Well-defined nanofibers whose diameter and secondary structures are controlled by TFE concentration may be ideal building blocks for constructing bioelastic materials in tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.