Abstract
The notion of a bead metric space defined here (see Definition 6) is a nice generalization of that of the uniformly convex normed space. In turn, the idea of a central point for a mapping when combined with the “single central point” property of the bead spaces enables us to obtain strong and elegant extensions of the Browder–Göhde–Kirk fixed point theorem for nonexpansive mappings (see Theorems 14–17). Their proofs are based on a very simple reasoning. We also prove two theorems on continuous selections for metric and Hilbert spaces. They are followed by fixed point theorems of Schauder type. In the final part we obtain a result on nonempty intersection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.