Abstract
Weld bead geometry is a critical factor for determining the quality of welded joints, for this the welding process input parameters play a key role. In this study, the relationships between welding process variables and the size of the weld bead produced by pulsed GMAW process were investigated by a neural network trained with Bayesian-Regulation Back Propagation algorithm and a second degree regression models. A series of experiments were carried out by applying a Box-Behnken design of experiment. The results showed that both models can predict well the bead geometry. However, the neural network model had a slightly better performance than the second-order regression model. Both models can be used for further analyses and using them may surmount or reduce the need of experimental procedures especially in thermal analysis validations of welding finite element modelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.