Abstract

The beryllium-doped Be3B11- cluster has two nearly isoenergetic isomers, adopting the smallest trihedral spherical geometries with a boron single-chain skeleton. The B11 skeleton in the global minimum (C2v, 1A1) comprises three conjoined boron rings (one B8/two B7) on the waist, sharing two B3 equilateral triangles at the top and bottom, respectively. However, the local minimum (Cs, 1A') has one deformed B4 pyramid at the top. The drastic structural transformation of B11 skeletons from perfectly planar B11 clusters mainly profited from robust electrostatic interaction between Be atoms and B11 skeletons. The dynamic simulations suggest that two species can interconvert via a novel mechanism, that is "triangle-pyramid-triangle", which facilitates the free migration of boron atoms in the B11 skeleton, thereby showing the fascinating dynamic fluxionality. The chemical bonding analyses reveal that the B11 skeleton is covered by two types of delocalized π bonds in an orthogonal direction, which leads to its spherical aromaticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.