Abstract
It is shown that each quadrature computed by Romberg algorithm is exact for slightly perturbed data (computed values of the integrand). For the ordinary summation algorithm the cumulation of rounding errors is proportional to N, the number of quadrature modes. For more elaborate summation the cumulation is proportional to log N. For the binary floating point arithmetic with proper rounding of the sum, the cumulation of errors can be made practically independent of N. In each case the influence of Romberg extrapolation on the cumulation of rounding errors is bounded by a constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.