Abstract

Smartphones with the Android operating system can acquire Global Navigation Satellite System (GNSS) raw pseudorange and carrier phase observations, which can provide a new way for the general public to obtain precise position information. However, only postprocessing precise orbit and clock offset products in some older smart devices are applied in current studies. The performances of precise point positioning (PPP) with the smartphone using real-time products and newly smartphones are still unrevealed, which is more valuable for real-time applications. This study investigates the observation data quality and multi-GNSS real-time PPP performance using recent smartphones. Firstly, the observed carrier-to-noise density ratio (C/N0), number of satellites and position dilution of precision (PDOP) of GNSS observations are evaluated. The results demonstrate that the C/N0 received by Huawei Mate40 is better than that of the Huawei P40 for GPS, BDS, QZSS and Galileo systems, while the GLONASS is poorer, and the PDOP of the Huawei P40 is slightly better than that of Mate40. Additionally, a comprehensive analysis of real-time precise orbit and clock offset products performance is conducted. The experiment result expresses that the orbit and clock offset performance of GPS and Galileo is better than that of BDS-3 and GLONASS, and BDS-2 is the worst. Finally, single- and dual-frequency multi-GNSS combined PPP experiments using observations received from smartphones and real-time products are conducted; the results indicate that the real-time static PPP using a smartphone can achieve decimeter-level positioning accuracy, and kinematic PPP can achieve meter-level positioning accuracy after convergence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call