Abstract

BackgroundPreclinical studies have indicated that the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) is a rapid-acting antidepressant drug with limited dissociation properties and low abuse potential. However, its effects and molecular mechanisms remain unclear. In this work, we examined the involvement of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and Narp in the antidepressant-like actions of (2R,6R)-HNK in a chronic restraint stress (CRS) mouse model.MethodsC57BL/6 male mice were subjected to CRS for 8 h per day for 14 consecutive days. Open field, forced swimming, novelty suppressed feeding, and tail suspension tests were performed after administering (2R,6R)-HNK (10 mg/kg), a combination of (2R,6R)-HNK and NBQX (an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist; 10 mg/kg), or a combination of (2R,6R)-HNK and ANA-12 (a TrkB receptor antagonist; 0.5 mg/kg). The mRNA levels of Bdnf and Narp in the hippocampus were determined by quantitative reverse transcription-PCR (qRT–PCR). Western blotting was used to determine the hippocampal protein levels of GluA1, GluA2, BDNF, Narp, PSD95, and synaptophysin, as well as the p-TrkB/TrkB protein ratio.Results(2R,6R)-HNK had rapid antidepressant-like effects in CRS mice. Furthermore, (2R,6R)-HNK significantly ameliorated CRS-induced downregulation of GluA1, GluA2, BDNF, Narp, PSD95, and the p-TrkB/TrkB protein ratio in the hippocampus. The effects of (2R,6R)-HNK were blocked by combinations with NBQX or ANA-12.ConclusionBDNF-TrkB signaling-mediated upregulation of Narp in the hippocampus may play a key role in the antidepressant-like effect of (2R,6R)-HNK in the CRS model of depression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.