Abstract

NMDA receptor-mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain-derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2 ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA-induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild-type mice and age-matched symptomatic R6/2 mice (a model of HD), NMDA application (75μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10ng/mL) potentiated NMDA effects in wild-type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2 AR blockade. The protective effect of BDNF against NMDA-induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2 AR ligands in HD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.