Abstract

Recently, we have identified a novel form of synaptic plasticity that acts to stabilize neocortical firing rates by scaling the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of neuronal activity. Here, we show that the effects of activity blockade on quantal amplitude are mediated through the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous BDNF prevented, and a TrkB–IgG fusion protein reproduced, the effects of activity blockade on pyramidal quantal amplitude. BDNF had opposite effects on pyramidal neuron and interneuron quantal amplitudes and modified the ratio of pyramidal neuron to interneuron firing rates. These data demonstrate a novel role for BDNF in the homeostatic regulation of excitatory synaptic strengths and in the maintenance of the balance of cortical excitation and inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.