Abstract
Brain-Derived Neurotrophic Factor (BDNF) plays important roles in promoting myelination in the developing central nervous system (CNS), however the influence it exerts on oligodendrocyte development in vivo remains unclear. As BDNF knockout mice die in the perinatal period, we undertook a systematic developmental analysis of oligodendroglial lineage cells within multiple CNS regions of BDNF heterozygous (HET) mice. Our data identify that BDNF heterozygosity results in transient reductions in oligodendroglial lineage cell density and progression that are largely restricted to the optic nerve, whereas the corpus callosum, cerebral cortex, basal forebrain and spinal cord white matter tracts are unaffected. In the first two postnatal weeks, BDNF HET mice exhibit reductions in the density of oligodendroglial lineage cells, oligodendrocyte precursor cells (OPCs) and postmitotic oligodendrocytes selectively in the optic nerve, but not in the brain or spinal cord white matter tracts. However, this normalizes later in development. The overall proportion of OPCs and mature oligodendrocytes remains unchanged from P9 to P30 in all CNS regions. This study identifies that BDNF exerts transient effects on oligodendroglial lineage cells selectively in the optic nerve during postnatal development. Taken together, this provides compelling evidence that BDNF haploinsufficiency exerts modest effects upon oligodendroglial cell density and lineage progression in vivo, suggesting its major role is restricted to promoting oligodendrocyte myelination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.