Abstract

Galactose intoxication of rats was used to disrupt metabolism of Schwann cells and skeletal muscle, two sites that contain the polyol-forming enzyme aldose reductase (AR). Galactose-fed rats develop a neuropathy characterized by nerve conduction deficits and axonal atrophy. To investigate the possibility that galactose metabolism by AR influences axonal function and structure by altering production of neurotrophic factors, the impact of galactose intoxication on nerve and muscle BDNF levels and the effects of exogenous BDNF treatment on galactose neuropathy were examined using biochemical, electrophysiologic and morphometric techniques. Galactose feeding increased BDNF protein in peripheral nerve and muscle. Exogenous BDNF treatment attenuated motor nerve conduction velocity deficits in the sciatic nerve of galactose-fed animals and myelin splitting of motor axons in the ventral root. In contrast, sensory nerve conduction velocity (SNCV) deficits in the sciatic nerve and myelin splitting in the central projections of sensory neurons were not prevented by BDNF treatment. BDNF treatment did not attenuate reduced axonal caliber in the sciatic nerve, but did ameliorate the diminution of the caliber of central sensory projections in the dorsal root. These findings point to the potential use of BDNF in the treatment of peripheral neuropathies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.