Abstract

The cell biology of synaptic plasticity and neurotrophic factor has been extending to the understanding of pathological mechanisms of brain disorders. This knowledge could prove beneficial for the development of new therapies against brain diseases. Dendritic spines are actin-rich structures, which are part of most excitatory synapses in the central nervous systems. Recent studies have shown that the morphological plasticity of the spine plays a crucial role in higher brain functions, such as learning and memory. How neuronal activity modifies the morphology of the spines is an exactly prominent issue. Brain-derived Neurotrophic Dactor (BDNF) is a traditional, yet fully characterized neurotrophic factor, and the key role in the adult brain is to modulate synaptic plasticity. This review focuses on recent advances in the research of dendrite spines, synaptic plasticity, and BDNF. Lastly, the recent research of BDNF for the development of new therapies, in particular, against depression is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.