Abstract
The BDF (Beijing Density Functional) program package is in the first place a platform for theoretical and methodological developments, standing out particularly in relativistic quantum chemical methods for chemistry and physics of atoms, molecules, and periodic solids containing heavy elements. These include the whole spectrum of relativistic Hamiltonians and their combinations with density functional theory for the electronic structure of ground states as well as time-dependent and static density functional linear response theories for electronically excited states and electric/magnetic properties. However, not to be confused by its name, BDF nowadays comprises also of standard and novel wave function-based correlation methods for the ground and excited states of strongly correlated systems of electrons [e.g., multireference configuration interaction, static-dynamic-static configuration interaction, static-dynamic-static second-order perturbation theory, n-electron valence second-order perturbation theory, iterative configuration interaction (iCI), iCI with selection plus PT2, and equation-of-motion coupled-cluster]. Additional features of BDF include a maximum occupation method for finding excited states of Hartree-Fock/Kohn-Sham (HF/KS) equations, a very efficient localization of HF/KS and complete active space self-consistent field orbitals, and a unique solver for exterior and interior roots of large matrix eigenvalue problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.