Abstract
Decabromodiphenyl ether (BDE209), the homologue with the highest number of brominates in polybrominated diphenyl ethers (PBDEs), is one of the most widespread environmental persistent organic pollutants (POPs) due to its mass production and extensive application in recent decades. BDE209 is neurotoxic, possibly related to its interference with the thyroid hormone (TH) system. However, the underlying molecular mechanisms of BDE209-induced TH interference and neurobehavioral disorders remains unknown. Here, we explored how BDE209 manipulated the major enzyme, human type II iodothyronine deiodinase (Dio2), that is most important in regulating local cerebral TH equilibrium by neuroglial cells, using an in vitro model of human glioma H4 cells. Clonogenic cell survival assay and LC/MS/MS analysis showed that BDE209 could induce chronic neurotoxicity by inducing TH interference. Co-IP assay, RT-qPCR and confocal assay identified that BDE209 destroyed the stability of Dio2 without affecting its expression, and promoted its binding to p62, thereby enhancing its autophagic degradation, thus causing TH metabolism disorder and neurotoxicity. Furthermore, molecular docking studies predicted that BDE209 could effectively suppress Dio2 activity by competing with tetraiodothyronine (T4). Collectively, our study demonstrates that BDE209-induced Dio2 degradation and loss of its enzymatic activity in neuroglial cells are the fundamental pathogenic basis for BDE209-mediated cerebral TH disequilibrium and neurotoxicity, providing a target of interest for further investigation using glial/neuronal cell co-culture system and in vivo models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.