Abstract
We review the BCS to Bose–Einstein condensation (BEC) crossover scenario which is based on the well known crossover generalization of the BCS ground state wavefunction Ψ 0 . While this ground state has been summarized extensively in the literature, this Review is devoted to less widely discussed issues: understanding the effects of finite temperature, primarily below T c , in a manner consistent with Ψ 0 . Our emphasis is on the intersection of two important problems: high T c superconductivity and superfluidity in ultracold fermionic atomic gases. We address the “pseudogap state” in the copper oxide superconductors from the vantage point of a BCS–BEC crossover scenario, although there is no consensus on the applicability of this scheme to high T c . We argue that it also provides a useful basis for studying atomic gases near the unitary scattering regime; they are most likely in the counterpart pseudogap phase. That is, superconductivity takes place out of a non-Fermi liquid state where preformed, metastable fermion pairs are present at the onset of their Bose condensation. As a microscopic basis for this work, we summarize a variety of T-matrix approaches, and assess their theoretical consistency. A close connection with conventional superconducting fluctuation theories is emphasized and exploited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.