Abstract

The appearance of a shallow band(s) drives a superconductor towards the BCS-BEC crossover, conventionally associated with notable changes in single-particle properties and an elevated critical temperature. Here we demonstrate that the proximity to the crossover induced by a shallow band has also a dramatic effect on the phase diagram of the superconducting magnetic properties. When the system passes from the BCS to BEC regime, the intertype domain between superconductivity types I and II enlarges systematically, being inversely proportional to the square of the Cooper-pair radius, the main parameter that controls the BCS-BEC superconductivity. We also show that despite the presence of a shallow band, the condensate fluctuations are suppressed when it coexists in one material with standard deep bands, as in recent iron chalcogenides ${\mathrm{Fe}\mathrm{Se}}_{x}{\mathrm{Te}}_{1\ensuremath{-}x}$ and $\mathrm{FeSe}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.