Abstract

An emerging problem in patients with chronic myeloid leukemia (CML) is increasing resistance to tyrosine kinase inhibitors (TKIs). To determine genetic and cellular mechanisms involved in the development of resistance to TKIs, nine imatinib-resistant cell lines were derived from K- 562 cell line followed by testing of drug sensitivity, multidrug resistance proteins and cytogenetic studies. In imatinib-resistant cell lines cross-resistance to daunorubicin, etoposide and cytarabine were observed whereas sensitivity to dasatinib, nilotinib, cyclophpsphamide, bortezomib and busulfan was preserved. Treatment with imatinib decreased PGP and LRP expression, however it did not significantly influence MRP1 expression. Amount of signals in FISH analysis from ABL, BCR and from fusion genes (BCR-ABL or ABL-BCR) was mostly higher in imatinib-resistant cell lines in comparison to parental K-562 cell line. We concluded that BCR-ABL amplification but not cellular sensitivity is the major mechanisms of resistance in K-562 cell line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.