Abstract

AbstractThe inverse eigenvalue problem appears repeatedly in a variety of applications. The aim of this paper is to study a quadratic inverse eigenvalue problem of the form AXΛ2 + BXΛ + CX = 0 where A, B and C should be partially bisymmetric under a prescribed submatrix constraint. We derive an efficient matrix method based on the Hestenes‐Stiefel (HS) version of biconjugate residual (BCR) algorithm for solving this constrained quadratic inverse eigenvalue problem. The theoretical results demonstrate that the matrix method solves the constrained quadratic inverse eigenvalue problem within a finite number of iterations in the absence of round‐off errors. Finally we validate the accuracy and efficiency of the matrix method through the numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.