Abstract

Phosphomannose isomerase (PMI) is an enzyme that catalyses the first step of the L-galactose pathway for ascorbic acid (AsA) biosynthesis in plants. To clarify the physiological roles of PMI in AsA biosynthesis, the cDNA sequence of PMI was cloned from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) and overexpressed in tobacco transformed with Agrobacterium tumefaciens. The AsA and soluble sugar contents were lower in 35S::BcPMI2 tobacco than in wild-type tobacco. However, the AsA level in BcPMI2-overexpressing plants under stress was significantly increased. The T1 seed germination rate of transgenic plants was higher than that of wild-type plants under NaCl or H2O2 treatment. Meanwhile, transgenic plants showed higher tolerance than wild-type plants. This finding implied that BcPMI2 overexpression improved AsA biosynthetic capability and accumulation, and evidently enhanced tolerance to oxidative and salt stress, although the AsA level was lower in transgenic tobacco than in wild-type tobacco under normal condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.