Abstract

B-trichloroborazene B3N3H3Cl3 reacts with bis(trimethylsilyl)carbodiimide Me3Si−NCN−SiMe3 in THF or toluene, or without any solvent, to form non-oxide gels. The xerogels, amorphous B/C/N materials, and (semi)crystalline pyrolysis products were characterized using infrared (FTIR) and Raman spectroscopy, 11B- and 15N-nuclear magnetic resonance spectroscopy (NMR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and elemental analysis. In addition, the pyrolysis process was investigated through thermal gravimetry coupled with mass spectrometry (TG−MS). The xerogels consist of a three-dimensional polymeric network of borazene rings linked by carbodiimide groups. Interestingly, the sol−gel transition is phenomenologically analogous to oxide systems and the polymers are almost free of chlorine and trimethylsilyl endgroups. Pyrolysis at 1200 °C provides an amorphous ceramic with the composition BC0.23N1.1Si0.05H0.09 ≈ B4CN4. This material starts to crystallize around 1600 °C under evolution of nitrogen, forming nearly pure B4C at 2000 °C. Very small amounts of amorphous carbon as well as carbon nanotubes were also present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.