Abstract

Transcriptional control of gene expression in double-positive (DP) thymocytes remains poorly understood. We show that the transcription factor BCL11B plays a critical role in DP thymocytes by controlling positive selection of both CD4 and CD8 lineages. BCL11B-deficient DP thymocytes rearrange T cell receptor (TCR) α; however, they display impaired proximal TCR signaling and attenuated extracellular signal-regulated kinase phosphorylation and calcium flux, which are all required for initiation of positive selection. Further, provision of transgenic TCRs did not improve positive selection of BCL11B-deficient DP thymocytes. BCL11B-deficient DP thymocytes have altered expression of genes with a role in positive selection, TCR signaling, and other signaling pathways intersecting the TCR, which may account for the defect. BCL11B-deficient DP thymocytes also presented increased susceptibility to spontaneous apoptosis associated with high levels of cleaved caspase-3 and an altered balance of proapoptotic/prosurvival factors. This latter susceptibility was manifested even in the absence of TCR signaling and was only partially rescued by provision of the BCL2 transgene, indicating that control of DP thymocyte survival by BCL11B is nonredundant and, at least in part, independent of BCL2 prosurvival factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.