Abstract

A hydrophobic cleft formed by the BH1, BH2 and BH3 domains of Bcl-xL is responsible for interactions between Bcl-xL and BH3-containing death agonists. Mutants were constructed which did not bind to Bax but retained anti-apoptotic activity. Since Bcl-xL can form an ion channel in synthetic lipid membranes, the possibility that this property has a role in heterodimerization-independent cell survival was tested by replacing amino acids within the predicted channel-forming domain with the corresponding amino acids from Bax. The resulting chimera showed a reduced ability to adopt an open conductance state over a wide range of membrane potentials. Although this construct retained the ability to heterodimerize with Bax and to inhibit apoptosis, when a mutation was introduced that rendered the chimera incapable of heterodimerization, the resulting protein failed to prevent both apoptosis in mammalian cells and Bax-mediated growth defect in yeast. Similar to mammalian cells undergoing apoptosis, yeast cells expressing Bax exhibited changes in mitochondrial properties that were inhibited by Bcl-xL through heterodimerization-dependent and -independent mechanisms. These data suggest that Bcl-xL regulates cell survival by at least two distinct mechanisms; one is associated with heterodimerization and the other with the ability to form a sustained ion channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.