Abstract

Hyperosmolality in recombinant Chinese hamster ovary (rCHO) cell cultures induces autophagy and apoptosis. To investigate the effect of Bcl-x(L) overexpression on autophagy and apoptosis in hyperosmotic rCHO cell cultures, an erythropoietin (EPO)-producing rCHO cell line with regulated Bcl-x(L) overexpression was subjected to hyperosmolality resulting from NaCl addition in a batch culture and nutrient supplementation in a fed-batch culture. In the batch culture, Bcl-x(L) overexpression suppressed apoptosis, as evidenced by a decreased amount of cleaved caspase-7 and PARP. Concurrently, Bcl-x(L) overexpression also delayed autophagy, as indicated by reduced LC3 conversion, from LC3-I to LC3-II. As a result, the cell viability and EPO production were improved by Bcl-x(L) overexpression. In the fed-batch culture, the simultaneous application of Bcl-x(L) overexpression and nutrient feeding increased the culture longevity and maximum EPO concentration. Taken together, Bcl-x(L) overexpression delayed autophagy and apoptosis in hyperosmotic rCHO cell cultures, resulting in increased EPO production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call