Abstract

Understanding basic processes of human neural stem cell (hNSC) biology and differentiation is crucial for the development of cell replacement therapies. Bcl-X(L) has been reported to enhance dopaminergic neuron generation from hNSCs and mouse embryonic stem cells. In this work, we wanted to study, at the cellular level, the effects that Bcl-X(L) may exert on cell death during differentiation of hNSCs, and also on cell fate decisions and differentiation. To this end, we have used both v-myc immortalized (hNS1 cell line) and non-immortalized neurosphere cultures of hNSCs. In culture, using different experimental settings, we have consistently found that Bcl-X(L) enhances neuron generation while precluding glia generation. These effects do not arise from a glia-to-neuron shift (changes in fate decisions taken by precursors) or by only cell death counteraction, but, rather, data point to Bcl-X(L) increasing proliferation of neuronal progenitors, and inhibiting the differentiation of glial precursors. In vivo, after transplantation into the aged rat striatum, Bcl-X(L) overexpressing hNS1 cells generated more neurons and less glia than the control ones, confirming the results obtained in vitro. These results indicate an action of Bcl-X(L) modulating hNSCs differentiation, and may be thus important for the future development of cell therapy strategies for the diseased mammalian brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.