Abstract

An oligonucleotide-based microarray analysis of 9,500 genes and expressed sequence tags (ESTs) demonstrated that the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R) was significantly down-regulated in Bcl-X(L)-expressing as compared with control cells. This result was confirmed at the mRNA and protein levels by Northern and Western blot analyses of two independent hematopoietic cell lines and murine primary T cells. Bcl-X(L) expression resulted in a dose-dependent decrease in IP(3)R protein. IP(3)R expression is regulated as part of a mitochondrion-to-nucleus stress-responsive pathway. The uncoupling of mitochondrial oxidative phosphorylation resulted in induction of binding of the transcription factor NFATc2 to the IP(3)R promoter and transcriptional activation of IP(3)R. Expression of Bcl-X(L) led to a decreased induction of both NFATc2 DNA binding to the IP(3)R promoter and IP(3)R expression in response to the inhibition of mitochondrial oxidative phosphorylation. The Bcl-X(L)-dependent decrease in IP(3)R expression also correlated with a reduced T cell antigen receptor ligation-induced Ca(2+) flux in Bcl-X(L) transgenic murine T cells, and microsomal vesicles prepared from Bcl-X(L)-overexpressing cells exhibited lower IP(3)-mediated Ca(2+) release capacity. Furthermore, reintroducing IP(3)R into Bcl-X(L)-transfected cells partially reversed Bcl-X(L)-dependent anti-apoptotic activity. These results suggest that even under non-apoptotic conditions, expression of Bcl-2-family proteins influences a signaling network that links changes in mitochondrial metabolism to alterations in nuclear gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.