Abstract

Antiapoptotic Bcl-2-family members are well known for their 'mitochondrial' functions as critical neutralizers of proapoptotic Bcl-2-family members, including the executioner multidomain proteins Bax and Bak and the BH3-only proteins. It has been clear for more than 20 years that Bcl-2 proteins can impact intracellular Ca(2+) homeostasis and dynamics. Moreover, altered Ca(2+) signaling is increasingly linked to oncogenic behavior. Specifically targeting the Ca(2+)-signaling machinery may thus prove to be a valuable strategy for cancer treatment. Over 10 years ago a major controversy was recognized concerning whether or not Bcl-2 proteins exerted their antiapoptotic functions via Ca(2+) signaling through lowering the filling state of the endoplasmic reticulum (ER) Ca(2+) stores or by suppressing Ca(2+) release from the ER without affecting the filling state of this Ca(2+) store. Further research from different laboratories indicated a wide variety of mechanisms by which Bcl-2-family members can impact Ca(2+) signaling. In this review, we propose that antiapoptotic Bcl-2-family members are multimodal regulators of intracellular Ca(2+)-signaling events in cell survival and cell death. We will discuss how different Bcl-2-family members impact cell survival and cell death by regulating Ca(2+) transport systems at the ER, mitochondria and plasma membrane and by impacting the organization of organelles and how these insights can be exploited for causing cell death in cancer cells. Finally, we propose that the existing controversy reflects the diversity of links between Bcl-2 proteins and Ca(2+) signaling, as certainly not all targets or mechanisms will be operative in every cell type and every condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.