Abstract

The protooncogene Bcl-2 functions as a suppressor of apoptosis in growth factor-dependent cells, but a post-receptor signaling mechanism is not known. We recently reported that interleukin 3 (IL-3) and erythropoietin, or the protein kinase C activator bryostatin-1 (Bryo), not only suppresses apoptosis but also stimulates the phosphorylation of Bcl-2 (May, W. S., Tyler, P. G., Ito, T., Armstrong, D. K., Qatsha, K. A., and Davidson, N. E. (1994) J. Biol. Chem. 269, 26865-26870). To test whether phosphorylation is required for Bcl-2 function, conservative serine --> alanine mutations were produced at the seven putative protein kinase C phosphorylation sites in Bcl-2. Results indicate that the S70A Bcl-2 mutant fails to be phosphorylated after IL-3 or Bryo stimulation and is unable to support prolonged cell survival either upon IL-3 deprivation or etoposide treatment when compared with wild-type Bcl-2. In contrast, a Ser --> Glu mutant, S70E, which may mimic a potential phosphate charge, more potently suppressed the etoposide-induced apoptosis than wild type in the absence of IL-3. Since the loss of function S70A mutant can heterodimerize with its partner protein and death effector Bax, these findings demonstrate that Bcl-2:Bax heterodimerization is not sufficient and Bcl-2 phosphorylation is required for full Bcl-2 death suppressor signaling activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.