Abstract
RA is a chronic autoimmune disease characterized by accumulation of inflammatory cells within synovial joints. RA is associated with a failure of apoptosis of infiltrating leukocytes, thought to be a result of overexpression of prosurvival Bcl-2 proteins. Overexpression of Bcl-2 in hematopoietic cells can result in spontaneous autoimmunity. We therefore hypothesized that increased Bcl-2 in the hematopoietic compartment would reduce apoptosis and thereby, exacerbate inflammatory arthritis. Paradoxically, we found that overexpression of Bcl-2 in mice (vav-bcl-2) markedly reduced pathology in antibody-dependent models of RA (CIA and K/BxN serum transfer arthritis). No such protection was observed in a model of CD4(+) T cell-dependent, B cell-independent arthritis (mBSA/IL-1-induced arthritis). In CIA, vav-bcl-2 Tg mice had lower antibody production to CII, which might explain reduced disease. However, Bcl-2 overexpression also reduced passive K/BxN serum transfer arthritis. Overexpression of Bcl-2 caused a monocytosis, with preferential expansion of Ly6C(lo) monocytes and increased expression of the inhibitory receptor for IgG, FcγRIIb, on leukocytes. Skewing of the myeloid cell population, increases in FcγRIIb, and reduced arthritis were independent of the hypergammaglobulinemia found in vav-bcl-2 Tg mice. These data reveal selective effects of the Bcl-2-regulated apoptotic pathway on monocyte differentiation and the expression of FcRs critical for regulation of antibody/immune complex-mediated disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.