Abstract

Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.