Abstract

Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO•) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO•. Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO• and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity.

Highlights

  • Isolated microspore culture (IMC) is of special research interest because this process produces homozygosity and is used as a platform for cost effective production of double haploid (DH) lines

  • We have analyzed the contribution of Bcl-2 21 and AC-DEVD-CHO, which are inhibitors of cell death in microspore culture

  • We have demonstrated the effect of these proteins in preventing microspore cell death during the early stages of microspore culture and HO production; as well as the subsequent effects on production of green plants in wheat

Read more

Summary

Introduction

Isolated microspore culture (IMC) is of special research interest because this process produces homozygosity and is used as a platform for cost effective production of double haploid (DH) lines. In spite of a tremendous amount of effort, wheat IMC has not yet been shown to be efficient enough to be broadly implemented in wheat breeding programs. The rate of cell death of early to late uninucleate microspores, genotype dependency, low regeneration capacity of the produced embryo-like structure (ELS) and a low ratio of green vs albino plants are the major limiting factors for IMC adoption in wheat breeding programs. The present study deals the problem of early microspores cell death, lower ELS production and low efficiency of green plant regeneration in wheat microspore culture.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call