Abstract
With the Hirota bilinear method and symbolic computation, we investigate the $$(3+1)$$ -dimensional generalized Kadomtsev–Petviashvili equation. Based on its bilinear form, the bilinear Backlund transformation is constructed, which consists of four equations and five free parameters. The Pfaffian, Wronskian and Grammian form solutions are derived by using the properties of determinant. As an example, the one-, two- and three-soliton solutions are constructed in the context of the Pfaffian, Wronskian and Grammian forms. Moreover, the triangle function solutions are given based on the Pfaffian form solution. A few particular solutions are plotted by choosing the appropriate parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.