Abstract
We study the explicit formula (suggested by Gamayun, Iorgov and Lisovyy) for the Painlevé III(D8) τ function in terms of Virasoro conformal blocks with a central charge of 1. The Painlevé equation has two types of bilinear forms, which we call Toda-like and Okamoto-like. We obtain these equations from the representation theory using an embedding of the direct sum of two Virasoro algebras in a certain superalgebra. These two types of bilinear forms correspond to the Neveu–Schwarz sector and the Ramond sector of this algebra. We also obtain the τ functions of the algebraic solutions of the Painlevé III(D8) from the special representations of the Virasoro algebra of the highest weight (n + 1/4)2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.