Abstract

This paper presents an analytical investigation of the propagation of internal solitary waves in the ocean of finite depth. Using the multi-scale analysis and reduced perturbation methods, the integro-differential equation is derived, which is called the intermediate long wave (ILW) equation and can describe the amplitude of internal solitary waves. It can reduce to the Benjamin–Ono equation in the deep-water limit, and to the KdV equation in the shallow-water limit. Little attention has been paid to the features of integro-differential equations, especially for their conservation laws. Here, based on Hirota bilinear method, Bäcklund transformations in bilinear form of ILW equation are derived and infinite number of conservation laws are given. Finally, we analyze the fission phenomenon of internal solitary waves theoretically and verify it through numerical simulation. All of these have potential value for the further research on ocean internal solitary waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call