Abstract

Brain computer interfaces (BCI) depend on reliable realtime detection of conscious EEG changes for example to control a video game. However, scalp recordings are contaminated with non-stationary noise, such as facial muscle activity and eye movements. This interferes with the detection process making it potentially unreliable or even impossible. We have developed a new methodology which provides a hard and measurable criterion if conscious EEG changes can be detected in the presence of non-stationary noise by requiring the signal-to-noise ratio of a scalp recording to be greater than the SNR-wall which in turn is based on the highest and lowest noise variances of the recording. As an instructional example, we have recorded signals from the central electrode Cz during eight different activities causing non-stationary noise such as playing a video game or reading out loud. The results show that facial muscle activity and eye-movements have a strong impact on the detectability of EEG and that minimising both eye-movement artefacts and muscle noise is essential to be able to detect conscious EEG changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.