Abstract
The Brain-Computer Interface (BCI) was envisioned as an assistive technology option for people with severe movement impairments. The traditional synchronous event-related potential (ERP) BCI design uses a fixed communication speed and is vulnerable to variations in attention. Recent ERP BCI designs have added asynchronous features, including abstention and dynamic stopping, but it remains a open question of how to evaluate asynchronous BCI performance. In this work, we build on the BCI-Utility metric to create the first evaluation metric with special consideration of the asynchronous features of self-paced BCIs. This metric considers accuracy as all of the following three - probability of a correct selection when a selection was intended, probability of making a selection when a selection was intended, and probability of an abstention when an abstention was intended. Further, it considers the average time required for a selection when using dynamic stopping and the proportion of intended selections versus abstentions. We establish the validity of the derived metric via extensive simulations, and illustrate and discuss its practical usage on real-world BCI data. We describe the relative contribution of different inputs with plots of BCI-Utility curves under different parameter settings. Generally, the BCI-Utility metric increases as any of the accuracy values increase and decreases as the expected time for an intended selection increases. Furthermore, in many situations, we find shortening the expected time of an intended selection is the most effective way to improve the BCI-Utility, which necessitates the advancement of asynchronous BCI systems capable of accurate abstention and dynamic stopping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.