Abstract

Motor imagery-based brain-computer interface (MI-BCI) controlling functional electrical stimulation (FES) is promising for disabled patients to restore their motor functions. However, it remains unclear how much the BCI part can contribute to the functional coupling between the brain and muscle. Specifically, whether it can enhance the cerebral activation for motor training? Here, we investigate the electroencephalographic and cerebral hemodynamic responses for MI-BCI-FES training and MI-FES training, respectively. Twelve healthy subjects were recruited in the motor training study when concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were recorded. Compared with the MI-FES training conditions, the MI-BCI-FES could induce significantly stronger event-related desynchronization (ERD) and blood oxygen response, which demonstrates that BCI indeed plays a functional role in the closed-loop motor training. Therefore, this paper verifies the feasibility of using BCI to train motor functions in a closed-loop manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call