Abstract

In this paper, we further study a financial market model established in our earlier paper. The model dynamics is driven by a two-dimensional piecewise linear discontinuous map, which is investigated analytically and numerically for one-sided fixed points being flip saddle and two-sided fixed points being attractors. The existence of chaotic orbit is explained by using the theory of homoclinic intersection between stable and unstable manifolds of the flip saddle invariant set. The structure of chaotic attractor is disclosed. It consists of finite segments rooted on both sides of the [Formula: see text]-axis which are unstable manifolds of flip saddle invariant set. The basins and their structural changes of bounded attractors and coexisting attractors are presented by contact bifurcation theory and numerical simulations. The border collision bifurcation (BCB for short) curves are calculated and coexisting multiattractors are disclosed by overlapping periodicity regions. The results can deepen our understanding of financial markets and dynamical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call