Abstract

Of the thousands of long noncoding RNAs (lncRNA) identified in lymphocytes, very few have defined functions. In this study, we report the discovery and functional elucidation of a human B cell-specific lncRNA with high levels of expression in three types of B cell cancer and normal B cells. The AC099524.1 gene is upstream of the gene encoding the B cell-specific phospholipase C γ 2 (PLCG2), a B cell-specific enzyme that stimulates intracellular Ca2+ signaling in response to BCR activation. AC099524.1 (B cell-associated lncRNA modulator of BCR-mediated Ca+ signaling [BCALM]) transcripts are localized in the cytoplasm and, as expected, CRISPR/Cas9 knockout of AC099524.1 did not affect PLCG2 mRNA or protein expression. lncRNA interactome, RNA immunoprecipitation, and coimmunoprecipitation studies identified BCALM-interacting proteins in B cells, including phospholipase D 1 (PLD1), and kinase adaptor proteins AKAP9 (AKAP450) and AKAP13 (AKAP-Lbc). These two AKAP proteins form signaling complexes containing protein kinases A and C, which phosphorylate and activate PLD1 to produce phosphatidic acid (PA). BCR stimulation of BCALM-deficient B cells resulted in decreased PLD1 phosphorylation and increased intracellular Ca+ flux relative to wild-type cells. These results suggest that BCALM promotes negative feedback that downmodulates BCR-mediated Ca+ signaling by promoting phosphorylation of PLD1 by AKAP-associated kinases, enhancing production of PA. PA activates SHP-1, which negatively regulates BCR signaling. We propose the name BCALM for B-Cell Associated LncRNA Modulator of BCR-mediated Ca+ signaling. Our findings suggest a new, to our knowledge, paradigm for lncRNA-mediated modulation of lymphocyte activation and signaling, with implications for B cell immune response and BCR-dependent cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.