Abstract
The (BC type) z-measures are a family of four parameter z,z′,a,b probability measures on the path space of the nonnegative Gelfand–Tsetlin graph with Jacobi-edge multiplicities. We can interpret the z-measures as random point processes Pz,z′,a,b on the punctured positive real line X=R>0∖{1}. Our main result is that these random processes are determinantal and moreover we compute their correlation kernels explicitly in terms of hypergeometric functions.For very special values of the parameters z,z′, the processes Pz,z′,a,b on X are essentially scaling limits of Racah orthogonal polynomial ensembles and their correlation kernels can be computed simply from some limits of the Racah polynomials. Thus, in the language of random matrices, we study certain analytic continuations of processes that are limits of Racah ensembles, and such that they retain the determinantal structure. Another interpretation of our results, and the main motivation of this paper, is the representation theory of big groups. In representation-theoretic terms, this paper solves a natural problem of harmonic analysis for several infinite-dimensional symmetric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.