Abstract

Beet black scorch virus (BBSV) has been reported as a natural pathogen of sugar beet and distributed all over the world, causing great economic losses to the sugar industry. Research on interactions between BBSV and its host by using model plant Nicotiana benthamiana is significantly important and nessesary for understanding virus infection process and exploring plant resistance mechanism. The results of sequencing the transcriptome of N. benthamiana infected with BBSV as well as gene screening in response to viral infection revealed upregulation of the small heat shock protein 17.6 gene (NbHSP17.6) and the effect of the protein on resistance to the virus. To further examine the involvement of HSP17.6 in defense responses in N. benthamiana, we tested interaction between HSP17.6 and other heat shock proteins such as HSP70 and HSP90 as well as BBSV encoded proteins. The results showed that HSP17.6 interacted with HSP70 and HSP90 but not with BBSV encoded proteins. When combined with other available results, it is possible that HSP17.6 acted as a small molecular chaperone to facilitate proper refolding of the specific proteins HSP70 and HSP90 required for BBSV infection and/or replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call