Abstract

Ssk1-type response regulator proteins are the core elements of histidine-to-aspartate systems that mediate fungal stress tolerance, a determinant to the biocontrol potential of fungal entomopathogens. We characterized the functions of Beauveria bassiana Ssk1 (Bbssk1) by analyzing multi-phenotypic changes in ΔBbssk1 and differentially expressed genes in the digital gene expression (DGE) libraries of ΔBbssk1 and wild-type constructed under osmotic stress. The Bbssk1 disruption caused 25 % reductions in conidial yield and virulence to Spodoptera litura larvae and significant defects in tolerances to two osmotic salts (81-84 %), H2O2 oxidation (23 %), two fungicides (21-58 %), three cell wall biosynthesis inhibitors (25-36 %), and three metal ions (~8 %) during colony growth, respectively, but little changes in cell sensitivity to menadione oxidation and in conidial thermotolerance and UV-B resistance. RNA-seq analysis with the DGE libraries revealed differential expressions of 1,003 genes in the ΔBbssk1 genome. Of those, many associated with conidiation, stress response, xenobiotic transport, cell wall integrity, and protein/carbohydrate metabolism were remarkably down-regulated, including the genes involved in mitogen-activated protein kinase (MAPK) signal pathway that downstream of Bbssk1. Our results indicate that Bbssk1 regulates positively the expressions of the MAPK cascade in the pathway of B. bassiana and many more downstream genes associated with conidiation, multi-stress tolerance, and virulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.