Abstract
Babies who can’t communicate through language use crying as a way to express themselves. By identifying the unique characteristics of their cries, parents can quickly meet their needs and ensure their health. This study aimed to create a lightweight deep learning model called Bbcry to classify the cries of babies and determine their needs, such as hunger, pain, normal, deafness, or asphyxia. The model was trained using the Chillanto dataset and underwent three stages of development. Initially, the Wav2Vec 2.0 model was utilized as a teacher for the Knowledge Distillation (KD) method and applied to the transformer and prediction layers to reduce the number of required parameters. Then, a projection head layer was added and linked to the transformer layers to control their impact on the Wav2Vec 2.0 model. This resulted in the first version of the Bbcry model with an accuracy of 93.39% and an F1-score of 87.60%. Finally, the number of transformer layers was reduced to create the Bbcry-v4 model with only 9.23 million parameters, which used only 10% of the parameters of Wav2Vec 2.0 while only slightly reducing accuracy and F1-score. The study concludes with a software demonstration that shows the proposed model’s ability to accurately recognize and determine the needs of infants based on their cries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.