Abstract

Bayhead deltas are important components of the rock record as well as modern estuaries, hosting important hydrocarbon reservoirs and many coastal cities, ports and large expanses of wetlands. Despite their significance, few studies have summarized their occurrence and sedimentary characteristics. In this paper we review the stratigraphic, sedimentary, and geomorphic characteristics of 68 modern and ancient bayhead deltas. Bayhead deltas are found in incised valleys, structural basins, fjords, interdistributary bays of larger open-ocean deltas, and other backbarrier environments. Except for within fjords, they generally prograde into shallower and more brackish waters than their open-ocean equivalents. As a result, 80% of modern, 68% of Quaternary, and 67% of ancient bayhead deltas have clinoform thicknesses of 10 m or less with 73% of modern bayhead deltas having clinoform thicknesses of 5 m or less. Additionally, 89% of modern, 81% of Quaternary, and 77% of ancient bayhead deltas examined are fluvial dominated. We distinguish true bayhead deltas from their genetically similar bayhead shorelines, which are not constructional features but sites of enhanced marsh or estuarine sedimentation near river mouths with inadequate rates of sediment delivery to form distributary channels and prograde into the estuary or lagoon. We also distinguish confined bayhead deltas found in incised valleys, structural basins, and fjords from unconfined bayhead deltas found as incipient lobes of larger delta complexes and other back-barrier lagoons. The architecture of confined bayhead deltas is largely influenced by the limited accommodation brought about by the walls of the flooded valleys in which they are located. As such, confined bayhead-delta ontogeny is controlled by many autogenic interactions within these valley walls. Both confined and unconfined bayhead deltas are sensitive to sea-level rise, climate-controlled changes in sediment flux, and tectonics. Their relatively small size, connection with the terrestrial system, and protected nature make them the ideal depositional system to record Earth history including sea-level and climate changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.